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Synopsis 

The differential equations governing the molecular weight distribution (MWD) in step-growth 
polymerization are coupled and nonlinear and a large number of them must be solved simulta- 
neously to  keep the truncation error low. In this work, these equations have been decoupled so 
that they can be solved sequentially. The solution of these is independent of the truncation error 
and there is considerable saving of computation time. To demonstrate the efficiency of the 
algorithm, the formation of polyethylene terephthalate (PET) in batch reactors with ethylene 
glycol evaporating has been analyzed. The feed to the reactor is taken as polymer with its 
oligomers present according to the Flory's distribution. The effect of pressure and temperature of 
the reactor on the progress of polymerization has been modelled and evaluated. The amount of 
ethylene glycol distilled, the concentrations of the first five oligomers Q1 to Q5, the number 
average chain length, and the polydispersity index of the polymer have been determined. It is 
shown that the reduced pressure and increased temperature reduce the concentration of the 
condensation product in the reaction mass, thus pushing the polymerization in the forward 
direction. Lastly the CPU time on Dec 1090 using this algorithm is only 0.40 s compared to about 
10 min for similar computations using other existing methods. 

INTRODUCTION 

Step-growth polymerization occurs whenever the starting monomer ahas 
reacting functional growth on it.'-6 If the monomer is bifunctional in nature, 
the resulting polymer is linear, whereas if it  has more than two functional 
groups, the polymer is either branched or a network in structure. The 
step-growth polymerization of bifunctional monomers, denoted as ARB, where 
A and B are reacting functional groups, can be schematically written as: 

P,+,+ W, m , n =  1,2 ,... (1) 

Above, p ,  and p ,  are polymer molecules having m and n repeat units and W 
represents the condensation product. The kp ,mn and k;, ,+n are the forward 
and the reverse rate constants which are in general chain length dependent. 

The forward and the reverse rate constants in eq. (1) are usually complex 
functions of the chain length of the polymer molecules. Based on experimental 
results of Bhide and Sudborough' on the esterification of aliphatic acids in 
presence of excess ethanol, Flory was the 6rst to propose the equal reactivity 
h~pothesi&~ where kp,  mn and i;, m + n  are assumed to be independent of the 
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chain lengths rn and n. Mathematical results on polymerization in batch 
reactors, based on the equal reactivity hypothesis, have been extensively 
tested e~perimentally.'~-'~ The discrepancy between them has been explained 
in the literature either by assuming the chain length-dependent'4.15 reactivity 
or the functional group-dependent reactivity.16 Even though step-growth 
polymerization in the reaction-controlled region was considerably more com- 
plex, the kinetic model based on the equal reactivity hypothesis is an ex- 
tremely good approximation. 

The reaction engineering of step-growth polymerization has recently been 
reviewed in the literature.17-" A systematic analysis of irreversible polymer- 
ization of ARB monomers in batch reactors were presented in which the mole 
balance equations for various species were written. A Z-transform or a Laplace 
transform function was defined and various mole balance relations for various 
molecular species were combined into a single one to give the rate of genera- 
tion of these functions. In these analyses, a kinetic approach has been taken to 
analyze the reactor 21 Probabilistic arguments have been for- 
warded by Flory and it has been shown the molecular weight distribution 
(MWD) in batch reactors is the most probable distribution.' 

For reversible polymerization, Flory and Tobolsky have shown through 
statistical arguments that the molecular weight distribution continues to be 
the most probable distribution. Subsequent numerical computations22, 23 as 
well as the analytical development of Kilkson20 both show that the kinetic 
approach gives the same result as long as the feed to the batch reactor is 
monomer. Deviations are found if the feed is a mixture of higher oligomers. 
Step-growth polymerization can be carried out in reactors other than batch 
reactors. Among the various possible reactor geometries which has found 
popularity in industries, are homogeneous continuous flow stirred tank reac- 
tors (HCSTRs). These analyses are particularly suited when a kinetic ap- 
proach to analysis is adopted. 

The major difficulty of solving the MWD of reversible ARB polymerization 
computationally lies in the fact that the chain growth step consists of infinite 
elementary reactions as written in Eq. (1). The various mole balance relations 
for batch reactors are highly nonlinear differential equations which are cou- 
pled with each other. 

Computer calculations of the MWD of ARB polymerization have been 
performed by several workers and are found to require considerable computa- 
tion time for the following reasons. It is not possible to define infinity on a 
computer and therefore one takes a large number of equations (say N,) such 
that the total number of species count remains the same as the starting value. 
Any deviation between the two is called the truncation error and is kept to a 
minimum by continuously increasing N,. A normal strategy of computation is 
to increase N, by 10 whenever the concentration of the last species increases 
beyond a certain minimum value (about 

It can be easily seen that the total number of species increases with 
increasing conversion and by the time 90% conversion is reached, one normally 
requires about 500 species to obtain meaningful solution. One of the ways to 
overcome this computational problem and the approach recommended in the 
literature, is to derive the moment generation equations from the mole 
balance relation governing the MWD. The i-th moment, A,, of a distribution 



COMPUTATION OF MOLECULAR WEIGHT DISTRIBUTION 573 

of p ,  is defined as 

m 

X i =  C rni[p,] z = 0 , 1 , 2 ,  ... ( 2 )  
m = l  

where [ , 3 refers to the concentration of the species. Among these moments, 
the first three are important: the zeroth moment, A,, refers to the total moles 
of the species, the first moment, A,, refers to the total species count, and A, 
gives a measure of the breadth of the distribution. A, is time invariant, but 
the generation relation for A, involves A, and that for A, involves A,, and so 
on. It is thus seen that the hierarchy of moments can be broken by assuming a 
suitable form of MWD which is close to the exact MWD form. 

It is thus seen that determining the MWD of the polymer formed as well as 
their moments from the moment generation relations are both difficult tasks. 
In practice one would like to determine the concentration of the first few 
oligomers and the first three moments of the distribution. 

In this work, we have decoupled the differential equations governing the 
MWD and we can now solve these exactly independent of the truncation 
error. We have subsequently determined the moment generation relations and 
solved them using a suitable relation to break the hierarchy of moments. We 
have demonstrated this algorithm on the polyethylene terephthalate forma- 
tion in batch reactor from which ethylene glycol is flashing. We assumed the 
feed to consist of polymers which are initially present in accordance with 
Flory’s distribution. We have simulated the industrial process in which high 
vacuum is applied by developing a simple model which determines the amount 
of condensation product (ethylene glycol) evaporated. We have computed the 
concentrations of the first five oligomers’ three moments of the distribution 
the number average chain length, and the polydispersity index under different 
reactor pressures and temperatures. 

KINETIC MODEL 

We have already pointed out that the equal reactivity hypothesis, originally 
proposed by Flory, is a good representation of step-growth polymerization. 
The kinetic model can then be written as 

kp,mn = 2k,; m + n, m, n = 1 , 2 , . .  

= k,; m = n ,  m = 1 , 2 ,  ... (3b) 

k ; , ,  = k;; m = 2 , 3 ,  ... 

It is assumed that the feed to the batch reactors consists of [P,] , ,  n = 

1 , 2 , 3 ,  ... . It is observed that P, is consumed in the forward reaction 
whenever it reacts with any species of the reaction mass whereas it is formed 
in the reverse step whenever a P, ( n  2 2)  reacts with W at sites near its two 
ends. Similarly, a molecular species P, is formed when a P, (P < n) reacts 
with a P,- I in the forward step or a Pi (i  > n) reacts with W. A molecule of 
P, is removed whenever it reacts with any other molecule or any of its bonds 
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reacts with W by the reverse reaction. These mole balance equations for the 
batch reactors can then be written in the dimensionless form as follows: 

03 

- -2P1P + 2PWC Pi dp,  - -  
dt i-2 

n-  1 m 

- -2P,P + C P,P,-, + 2PW C Pi - P(n - l)Pn n 2 2 (4b) dp, -- 
dt r=1 i = n + l  

where 

Pn = [ Pn]/Alo; n = 1,2 , .  . . (5b) 

, n =  1 , 2 ,  ... (54 
[Pnlo Pn, = -’ 
A 10 

W 

P =  C P ,  
n - 1  

n= 1 

t = kpAlot’ (50 

Above t’ is the actual time and t the dimensionless time. The parameter P is 
the inverse of the equilibrium constant. The initial conditions are 

AC t = 0 , P i = P i , , i = 1 , 2  ,... (6) 

It is possible to determine the differential equation governing P by adding Eq. 
(4) for all n to obtain 

00 M n-1 m w  m dP 
dt 
_ -  - - W E ~ , +  C P , P , - , + ~ P W C  C P , - B E ( n - l ) P n  

n = l  n=2 r = l  n = l  i = n + l  n = 2  

m 
= - p 2 + p w C  ( n - l ) P n  

n=2  
(7) 
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It is further observed that the total repeat count, RC, defined as 
W 

RC = c nPn 
n- 1 

is indeed time invariant. This implies RC is the same as that charged to the 
reactor, initially, that is, for all time t ,  RC = 1. Therefore, 

W W W 

C ( n  - I)P, = C nPn - C P, = ( 1  - P )  (9) 
n-2  n = l  n= 1 

we define conversion pA as 

PA = ( l  - p / p O )  (10) 

If whatever condensation product W formed during polymerization is kept 
within the reactor, then the stoichiometry gives 

w =  wo + (Po - P )  (11) 

In terms of these, the differential equation governing conversion pA is given 
bY 

&.4 - = - ( 1  + pp; 
dt 

at t = 0 ,  PA = 0 

MOLECULGR WEIGHT DISTRIBUTION 

To obtain the MWD of the polymer, we observe that 
W n- 1 
C P i = P - P n -  C P i  

i - n + l  i = l  

Equation (4) under this transformation becomes 

- - 2 P , ( P +  BW) + 2pwp dP1 -- 
dt 

dpn - = -Pn{2P+ pW(n + 1 ) )  + 
dt 

a t  

(144 t = 0 ,  P i = P i , , i = 1 , 2  ,... 
Let us define variable +n-l and 2, as 

r = l  \ i = l  I 

+ pW(n + l ) ]  dt (15b) 
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In terms of these Eq. (16) reduces to 

which gives 

Z ,  = 1 t an-lexp( - / [ 2 ~  + 
0 

The mole balance equation given in (16) is important for the following two 
reasons. Suppose it is decided to solve the concentrations of, say, the first ten 
species. The differential equations written in Eq. (4) require the entire MWD 
to be computed. As opposed to this, in the form written in Eq. (16), one can 
just solve for these ten species all the way up to the equilibrium conversion, 
without worrying about truncation error as was necessary in the earlier form. 

The second biggest advantage of the mole balance relations written in the 
form given in Eq. (14) is that one can in principle determine the MWD 
analytically. One first solves for PI; after this is done, (p, is found using Eq. 
(16) and 2, by integrating Eq. (17). Once Pz is known, P3 can be found and so 
on. The analytical form of the MWD can be seen to be extremely complex and 
in the following, the advantages of the numerical integration is demonstrated. 

VAPOR LIQUID MODEL OF THE BATCH REACTOR 

In Figure l(a), a batch reactor is shown in which the condensation product 
is shown evaporating. To be able to find the amount evaporated, we assume 

reactor 
tor time A t  

(b) 

Fig. 1. Model for the computation of MWD in batch reactors with condensation product 
distilling from it: (a) batch reactor; (b) scheme of computation. 
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that the vapor and the liquid are in equilibrium. The mole balance relation for 
the condensation product is given by 

dw 
dt 
-- - P 2  - /3W(l- P )  - Q, 

assuming that the entire reaction mass is a t  the uniform concentration. If it is 
further assumed that the polymer cannot be evaporated and the vapor liquid 
equilibrium is governed by simple Roult’s law, then 

Above Pr is the pressure applied on the reactor, PT(T) is the vapor pressure 
of the condensation products, and W is the uniform concentration of con- 
densation product in the reactor. Eq. (19) can be rearranged to give the 
equilibrium concentration of the condensation product, W,, as 

A& w, = P- 
1 - A &  

where 

If A& is greater than or equal to 1, it  would mean that the vapor pressure of 
the condensation product is lower than the applied pressure and W would not 
evaporate from the reaction. In this case Q ,  = 0 in Eq. (18), W would 
accumulate in the reactor and its concentration would be given by the 
stoichiometric relation in Eq. (11). 

The amount of the condensation product distilled due to evaporation can be 
found using the computation scheme given in Figure 16. In this figure, by 
“closed reactor,” it is meant that the condensation product is not allowed to 
escape. The total time of polymerization is divided into small increments, At. 
Equation (18) is integrated for time At using the usual fourth-order Runge 
Kutta method and then the reaction is flashed in a column [governed by Eq. 
(20)]. The polymer is recycled to the reactor for further polymerization and in 
this way the final time of polymerization is reached. The method outlined 
here is valid even when monomer Pl can evaporate, in which case Eq. (19) has 
to be rewritten for the ternary mixture. 

EXPRESSION FOR THE SECOND MOMENT 
OF DISTRIBUTION 

From the definition of the second moment given in Eq. (2) and the mole 
balance relations given in Eq. (4), one has 

m m n-1 

dt n = l  n=2 r = l  

-- 2 - - 2 P  C n2Pn + C n2 C P,P,-, 

n = l  j=n+l n= I 
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It is further observed that 

U n=l m = n + l  n= 1 

2A3 - 3A2 + A, - - 
6 

m n-1 m m 

n=2 m = l  n = l  n=l 

= 2A2X, + 2x2, 

which gives 

The moment closure approximation that we have used and found 

Fig. 

2.81 
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2.4 - 
2.2 - 

2.0 - 

0.5 -1.4 _------- 

- 1.2 

1-00 1.0 
d.2 0!4 d6 0'8 l.'O ' 1!2 1'4 11.6 i.8 2.0 

t 
pn (-) and p (- - -) versus time of polymerization for various fl  . pno = 1.43, po = 1.30. ,2 .  
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to give results within 2% of the exact solution is the following 

RESULTS AND DISCUSSION 

To test the computational algorithm presented in this paper, we assumed 
an arbitrary feed to the reactor consisting 0.1 mol/liter of condensation 
product W. It was further assumed that the polymer portion of the feed was a 
set of oligomers whose concentrations are governed by the following relation 

where PAo is the conversion of functional groups and is taken as 0.3 for all 
computations. Expressions for the zeroth moments (which is the same as P) 
are given in Eq. (7). The first moment is time invariant and therefore need not 
be solved. 

4 0.1 

0.5 

n I 1 I I I I I 1 
"0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 

t 
Fig. 3. Concentrations of PI and Pz species versus time for various B. PI,, = 0.49, Pzo = 0.143. 
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I I 1 I 1 I I 1 I 11.1 1.2 ' 
0 0.2 0.0 0.6 0.8 1.0 1.2 1.0 1.6 1.8 2-0 

t 
Fig. 4. Effect of reactor pressure on j t n  (-) and p (---) of polyethylene terephthalate 

polymer. p n o  = 1.43, p ,  = 1.30. T = W O K ,  /I = 2.0. 

In the computation of MWD when the equations are solved simultaneously, 
as it  has already been explained, one starts with a large number of equations 
to keep the truncation error within limits. This was necessary because the 
MWD equations written in the form as in Eq. (4) are coupled. These have 
been decoupled in Eq. (14) and, in this form, once P is known PI can be 
calculated uniquely without knowing P2, P3, etc. This follows for PI and so 
on. It is thus seen that one can calculate the concentration of any number of 
oligomers without solving the entire MWD. Practically, the entire MWD is 
never needed and the concentration of only a few species are sufficient. In 
addition, the sequential computation does not take more than 0.40 CPU 
seconds on Dec 1090. As opposed to this, the simultaneous solution of the 
MWD may take as much as 10 CPU minutes for the same conversion. 

For the computations of Figures 2 to 7, we arbitrarily decided to compute 
A,, A,, PI, P2, P3, P4, and P5 which constitutes seven differential equations 
only. We varied A t  starting from a very large value of 0.1 and found that for 
A t  I 0.01, the numerical results were independent of A t .  In view of this, A t  
was chosen to be 0.01 in generating all the results of this paper. We have 
generated Figures 2 and 3 for various value of p as follows. We have fixed A& 
in Eq. (20) a t  0.5 and plotted the number average chain length p n  and the 
polydispersity index p. The value of p n  and p for feed, p n o  and po, can be 
computed as 1.43 and 1.30, respectively. The average chain length p n  for short 
times rises but for large times, it approaches the equilibrium value which 
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t 
Fig. 5. Effect of reactor pressure on concentrations of PI (-) and Pz (-- -). PI,, = 0.49, 

P2,, = 0.143, T = 500 OK. 

depends upon p only. For larger than 5, there is essentially depolymeriza- 
tion and the final value of p n  is completely determined by p. The same effect 
is observed in the polydispersity index. Whenever there is depolymerization, 
the final polymer is less polydispersed giving lower p as seen in Figure 2. 

In Figure 3 the concentration of PI and P2 species have been plotted. For 
large p and large dimensionless time, the reaction mass appears to have 
settled on the equilibrium as Pl as well as P2 both appear to have attained 
the asymptotic levels. Since the equilibrium demands that P2 be present in 
larger quantity, most of Pl has depleted to form P2 as seen. However, for 
p < 5, the reaction mass is far from equilibrium because PI and P2 are both 
getting depleted even for t = 2.0 as apparent from their downward trends. 

The formation of polyethylene terephthalate (PET) starting from its 
monomer dimethyl terephthalate (DMT) is industrially carried out in two 
~ t a g e s . ' ~ - ~ ~  In the first stage, DMT is reacted with ethylene glycol (called 
transesterification stage) in which the end methyl groups are removed and 
there is a capping of both its ends predominantly forming bishydroxyethyl 
terephthalate (BHET). The polymerization of BHET is called the polycon- 
densation stage, and it is known that there are several side reactions occurring 
in addition to the main step-growth polymerization. These side reactions have 
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I I I I I I I I I 

been simulated for the batch reactors as well as HCSTF~.S.~~-~' Using this 
kinetic model we have earlier carried out the optimization of batch 
reactors.28-30 In these, we found that even though the side reactions are 
extremely important in accounting for the side products, the molecular weight 
of the polymer is determined by the step-growth step which can be repre- 
sented by Eq. (1). We further assume that polymer does not get into the vapor 
phase and Eq. (20) holds. The polymerization of BHET has the equilibrium 
constant of 0.5 and is independent of tem~erature.~' This implies that f3 = 2 
and, in generating Figures 4 to 7 we have kept f3 unchanged. The vapor 
pressure of ethylene glycol is presented in Ried et al.33 and is curve-fitted by 
an Antoinne equation 'bf the following form= 

6022.18 
T - 28.25 

In PF(T) = 20.2501 - 

Above P$(T) is in mmHg, while T is the temperature in OK. 

In Figures 4 and 5, we have fixed the reaction temperature as 500 O K  and 
varied the reactor pressure systematically from 100 to lo00 mmHg. The vapor 
pressure of ethylene glycol at this temperature is about 1100 mmHg and if the 
pressure is more than this, evidently there is no evaporation of ethylene glycol 
(EG), but for pressure less than this, the distillation of EG occuls almost 
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t 
Fig. 7. Effect of reactor temperature on concentrations of P, (-) and Pz (- --). P = 200 

mmHg, B = 2.0. 

immediately. For low pressures (up to 200 mmHg), p, and p both rise for the 
time of polymerization studied, however for large pressures, the reaction mass 
appears to reach equilibrium. Polymerization at  600 and 800 mmHg is inter- 
esting in the sense that even though p n  rise, the polymer becomes less 
polydispersed from the starting material. In Figure 5, concentrations of PI 
and P2 have been plotted. As expected, for lower pressures higher oligomers 
are formed preferentially, which means that both PI and P2 deplete very fast. 
However, for larger pressures, concentrations of both PI and P2 rise, as is seen 
in Figure 5. 

The polycondensation stage of the PET polymer formation is one of the few 
systems in which the forward and the reverse steps are equally affected 
leaving the eq~librium constant unchanged. In Figures 6 and 7, the reactor 
temperature has been changed systematically. Since temperature does not 
affect the equilibrium constant, B for all these runs remain at 2. As vapor 
pressure of ethylene glycol increases with temperature, the net effect of T is 
to lower A& which in turns lowers the EG content of the reaction mass. The 
polymerization proceeds closer to the irreversible case leading to continuous 
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increase of p n  and p with time of polymerization, as seen in Figure 6. 
However, for lower temperatures (e.g., 450") the MWD of the polymer 
becomes narrower even though pn increases only slightly. The behavior of PI 
and Pz in Figure 7 is similar to that in Figure 5. For larger temperatures, the 
reaction mass is far from equilibrium and concentrations of both PI and Pz 
fall due to their reactions, giving higher oligomers. However, for lower temper- 
atures they approach an asymptotic level, which is determined by the equi- 
librium of the reaction mass. 

CONCLUSIONS 

The computation of the MWD of step-growth polymerization in batch 
reactors required a large number of differential equations to be numerically 
solved simultaneously. This was necessary to keep the truncation error within 
specified bounds. 

In this work the differential equations governing the MWD have been 
decoupled and these have been arranged in a possible analytical solution. In 
view of the complexity, a convenient algorithm of computations has been 
developed which gives the concentrations of any number of molecular species, 
the number average chain length, and the polydispersity index of the polymer 
formed. The CPU time taken for the sequential computation is only 0.4 s as 
opposed to about 10 min for simultaneous solutions an Dec 1090. In addition, 
the MWD results obtained from the algorithm developed in this work is 
independent of the truncation error. 

The polyethylene terephthalate formation in the poly-condensation step 
has been solved using the method outlined in this work. The first five 
oligomers PI to P5, the number average chain length p,, and the polydisper- 
sity index p of the polymer, have been determined. The effects of temperature 
and pressure of the batch reactor on the properties of the polymer have been 
determined. 
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